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Abstract 0 A procedure based on release rates is proposed for the
establishment of dissolution specifications that ensure the bioequiva-
lence of a test and a reference product. This procedure, which confines
Cmax (the maximum concentration of the drug in vivo) and AUC∞ (the
area under the time−concentration curve, extrapolated to infinity) values
within any desired range (relative to a reference product), can be
used as an alternative to the methods presented in the FDA guidance1

or the USP.2 The method is appropriate for zero-order or first-order
release products with linear Level A in vitro/in vivo correlations (IVIVC).
Based on the result that the relative difference in Cmax must always
be smaller than the relative difference in the absorption rate constants
(for any test and reference products of a given drug), the “minimum
range” specifications are set. These specifications, which are identical
for both zero-order and first-order release products, are of general
validity. They depend only on the relative extents of release, but are
otherwise drug or formulation independent. For certain extended
release products demonstrating a constant release rate that is
unaffected by dissolution conditions (thus allowing the assumption of
Level A IVIVC), the “minimum range” dissolution limits are applicable
even when in vivo data is not available. If the reference product in
vivo data is available, wider limits (which are product specific) may
be set. If the drug disposition is monoexponential, the specifications
generated are the widest possible. They are termed the “ideal”
specifications. In the case of a multiexponential disposition, the limits
set by the procedure will (generally) not be the widest possible.
Although the method is based on one-compartment models, it is
essentially model independent in the sense that microscopic modeling
is redundant for its application.

Introduction
In the presence of in vitro/in vivo correlations (IVIVC),

dissolution specifications are important as a means of
controlling drug bioavailability and thus can be used as a
substitute for human bioequivalence studies. A recently
published FDA guidance deals with the application of
IVIVC for the setting of dissolution specifications for
extended release (ER) products.1 This guidance includes a
section concerning specifications based on the release rate
of the product. The section, however, is very brief and refers
only to products presenting a zero-order release rate. No
method for the establishment of the specifications is
included.

The present work proposes a procedure for the determi-
nation of rate specifications that ensures the bioequivalence
of a tested product and a reference product. This procedure
presents an alternative approach to the methods proposed
by the USP2 and FDA guidance.1 The procedure assumes
zero- or first-order release rates and linear Level A IVIVC.
Generally, IVIVC are established with in vivo data. Under

certain conditions, however, when the rate and extent of
release of an ER product are unaffected by dissolution
conditions (such as, pH, stirring rate, etc.), linear Level A
IVIVC are anticipated (assuming that drug release is the
rate-limiting step in the process of in vivo drug absorp-
tion).3 In these cases the procedure is applicable, even in
the absence of in vivo data. If the reference product in vivo
data are available, the dissolution specifications can be
widened.

Although this method is based on monoexponential
disposition models, it is also applicable when a multi-
exponential disposition is involved. The method is es-
sentially model independent in the sense that microscopic
modeling is not needed.

The bioequivalence metrics required today by most
regulatory agencies are AUC∞ (the area under the time-
concentration curve, extrapolated to infinity) and Cmax (the
maximum concentration of drug in vivo). The specifications
produced by the proposed procedure may bound both
metrics of a tested product, within any desired range,
relative to a reference product, thus ensuring their bioequiv-
alence. In this text, a range of (20% for both metrics is
used.

Setting Dissolution Specifications
Dissolution limits are used as a batch-to-batch quality

control means. If in vitro dissolution data are related to in
vivo data, these in vitro limits can then be used to control
the bioavailability of a tested product, relative to that of a
reference product (with a known bioavailability). In this
way, the bioequivalence of the two products can be guar-
anteed in vitro.

Bioavailability and bioequivalence are usually assessed
in terms of the Cmax and AUC∞ metrics. Most regulatory
agencies consider two drugs as bioequivalent when they
differ by no more than (20% with respect to each of these
metrics. Hence, dissolution limits that control a (20%
difference between the test metrics and the reference
metrics will ensure the bioequivalence of the products.
Under these circumstances, quality control is meaningful
in terms of the in vivo performance of the drug. Dissolution
limits that are set in this way may also be used for a
selection of a generic substitute or for the approval of
manufacturing changes (drug formulation, drug substance,
manufacturing site, etc.).

Dissolution limits that are too wide may allow the
approval of batches that are bioinequivalent to a reference
product. Limits that are too tight, on the other hand, may
lead to the rejection of a large number of production
batches. It is desired, therefore, to use the widest possible
dissolution specifications that are also consistent with the
allowed differences between the test and reference metrics
of bioequivalence.

Two sets of dissolution specifications are presented: the
“minimum range” and the “ideal” specifications. These two
sets are first investigated under the constraint of equal
extents of release (between the test and reference products).
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Then, dissolution specifications for test and reference drugs
with different extents of release are considered.

It is assumed throughout this text that linear level A
IVIVC are present.

The “Minimum Range” SpecificationssThe “mini-
mum range” specifications are the widest (relative) dis-
solution limits that are common to all reference products
with IVIVC. Being common to all reference products, the
“minimum range” limits must be tighter than the widest
feasible dissolution limits for any individual product.
Hence, the origin of the name.

It is useful to introduce, at this point, two dimensionless
variables, x and y.

For a one-compartment model with zero-order absorption
(Appendix A):

where D is the dose absorbed, ko is the zero-order absorp-
tion rate constant, kel is a first-order elimination constant,
and T is the duration of the absorption process. Then

where V is the compartment volume.
For a one-compartment model with a first-order absorp-

tion (Appendix B):

where ka is a first-order absorption constant. Then, by eq
B6:

It is proved in Appendixes A and B that the sensitivity of
Cmax to changes in the rate constant value grows as x or y
increase. This result was previously noticed numerically,
for the first-order case.5 The sensitivity reaches a maximum
value as {x or y} f ∞, where a change in ko or ka leads to
a change in Cmax of exactly the same relative value. This,
in turn, leads to the conclusion that the in vivo limits {∆ko/
ko(r) or ∆ka/ka(r)} ) ( 0.2 ensure the condition |∆Cmax|/Cmax(r)
< 0.2, where ∆ is the test to reference difference and the
subscript “r” stands for a reference product. This conclusion
is based on the assumption that the test and the reference
products are absorbed to the same extent.

If linear level A IVIVC are present, the in vivo absorption
rate constants must be linearly related to the in vitro
dissolution rate constants. Similarly the (in vivo) extent
of absorption must be linearly related to the in vitro extent
of release. Therefore, the in vitro condition:

where kdo or kda are the zero- or first-order dissolution rate
constants, respectively, will generally confine the Cmax
value of the test product within (20% of the reference
product value. As before, the ∆ sign stands for the test-to-
reference difference.

Equation 5 presents the “minimum range” rate specifica-
tions when the test and reference products are released to
the same extent. The “minimum range” specifications are
of general validity because they are not product specific.
They are valid even when the drug disposition is multi-
exponential, as demonstrated in Appendixes C and D. The
“minimum range” specifications may be applied for any

drug product with established IVIVC. They are particularly
useful for certain ER products, where drug release is slow
enough and well controlled (see the Discussion). With these
products, IVIVC are expected. Hence, in these particular
cases (and in these cases only), the “minimum range”
specifications may be used even when in vivo data are not
available.

The “Ideal” SpecificationssThe “ideal” specifications
are the widest possible specific dissolution limits that
ensure the bioequivalence of any test drug relative to a
specific reference product. Similar to the “minimum range”
specifications, the “ideal” specification may be applied for
any drug product with established IVIVC. However, the
“ideal” specifications are dependent on xr or yr, which
renders the “ideal” specifications product specific.

The widest specific limits of the in vivo absorption rate
constants are set in Appendix A (eqs A11 and A12) and
Appendix B (eqs B14 and B15) by a test-fitting procedure,
assuming one-compartment models with zero- or first-order
absorption, respectively. The test and reference products
are assumed to be absorbed to the same extent. If linear
level A IVIVC are present, the in vivo absorption rate
constant (ko or ka) is linearly related to the in vitro
dissolution rate constant (kdo or kda). Similarly, the extent
of in vivo absorption is linearly related to the extent of in
vitro release.

Hence, when absorption is zero-order, the “ideal” dis-
solution limits are as follows:

Upper limit (∆Cmax/Cmax(r) ) + 0.2):

Lower limit (∆Cmax/Cmax(r) ) - 0.2):

These limits are presented by the lines in Figures 1 and 2.
When absorption is first-order, the “ideal” dissolution

limits are as follows:
Upper limit (∆Cmax/Cmax ) + 0.2):

Figure 1sThe relative difference in the (zero-order) absorption rate constant
values correlating to a standard +20% difference in the Cmax values, as a
function of xr. The line presents ∆ko

//ko(r) values estimated by the use of eq
A11. In the presence of linear IVIVC, the same line defines the upper limit of
the “ideal” specifications.

∆kdo
/ /kdo(r) ) 0.0018722xr

-9.097 + 0.52492xr
-2.003 + 0.2

(6)

∆kdo
• /kdo(r) ) -0.35753e-4.4507xr - 0.44063e-1.0255xr - 0.2

(7)

∆kda
/ /kda(r) ) 0.277yr

-0.767 + 0.0271yr
-3.005 + 0.2 (8)

x ) kelD/ko ) kelT (1)

Cmax ) D
Vx

(1 - e-x) (2)

y ) kel/ka (3)

Cmax ) D
V

yy/(1-y) (4)

-0.2 <
∆kdo

kdo(r)
or

∆kda

kda(r)
< +0.2 (5)
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Lower limit (∆Cmax/Cmax(r) ) - 0.2):

These limits are presented by the lines in Figures 3 and 4.
Again, ∆ is the test-to-reference difference. The (*) and (•)
superscripts are reminders that +20% and -20% differ-
ences in Cmax, respectively, are involved.

The use of eqs 6-9 ensures a difference of exactly +20%
or -20% between the Cmax values of the test and reference
products. Thus, the range of the rate specifications is the
widest possible for each reference product, which renders
the “ideal” specifications product specific.

Equations 6 and 8 diverge for xr < 0.38 and yr < 0.07
respectively, indicating that an increase of >20% in Cmax
is impossible for x or y values low enough to satisfy these
conditions. This leads to the conclusion that a rate-related

dose-dumping is impossible when x < 0.38 in the zero-order
case, or y < 0.07 in the first-order case (see Appendixes A
and B).

Like the “minimum range” specifications, the “ideal”
specifications are particularly useful for ER products with
a well-controlled drug release. In these cases, the “ideal”
limits may be applied when the reference product in vivo
data are the only in vivo data available (see the Discussion).

Equations 6-9 are useful, even when the disposition of
the drug is multiexponential. In this case (as described in
Appendixes C and D), ke in xr or yr should be replaced by
R1, the largest macroscopic disposition rate constant. The
specifications defined this way are, in general, tighter than
the “ideal” specifications (which are not feasible when
disposition is multiexponential) and wider than the “mini-
mum range” specifications.

Dissolution Specifications when Products are Ab-
sorbed to a Different Extent. It has been postulated so
far that both the test and the reference products are
released (and hence absorbed) to the same extent. The
equations used for the dissolution specifications may be
generalized to include the effect of a difference in the extent
of release (Appendix E). The “minimum range” specifica-
tions in this case are

where A is the extent of in vitro release and ∆ is the test-
to-reference difference.

The “ideal” specifications are generalized by the use of
eqs E6 and E7. One of the following two equations should
be solved (numerically) to estimate Q, depending on
whether the absorption is zero- or first-order:

When absorption is zero-order

When absorption is first-order

Figure 2sThe relative difference in the (zero-order) absorption rate constant
values correlating to a standard −20% difference in the Cmax values, as a
function of xr. The line presents ∆ko

•/ko(r) values estimated by the use of eq
A12. In the presence of linear IVIVC, the same line defines the lower limit of
the “ideal” specifications.

Figure 3s∆Cmax/Cmax(r) values generated for the zero-order case by using
∆ko

//ko(r) values (defined by eq. A11) in eqs. A5 and A6. The effects of +20%
or −20% errors in the estimation of xr (Dxr/xr ) +0.2 or Dxr/xr ) −0.2) are
also included.

Figure 4s∆Cmax/Cmax(r) values generated for the zero-order case by using
∆ko

•/ko(r) values (defined by eq A12) in eqs. A5 and A6. The effects of +20%
or −20% errors in the estimation of xr (Dxr/xr ) +0.2 or Dxr/xr ) −0.2) are
also included.

-0.2 < ∆A
Ar

< 0.2

-0.2 - ∆A
Ar

<
∆kdo

kdo(r)
or

∆kda

kda(r)
< 0.2 - ∆A

Ar
} (10)

1 - e-Qxr

Q(1 - e-xr)
- 1 + ∆A

Ar
) (0.2 (11)

∆kda
• /kda(r) ) -0.299e-26.4yr - 0.348e-3.128yr -

0.146e-0.165yr - 0.2 (9)
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where the (+) sign is related to the upper dissolution limit
and the (-) sign to the lower dissolution limit.

The “ideal” dissolution limits are then defined by

If multiexponential disposition is involved, kel in xr or yr
(eq 11 or 12) should be replaced by R1, the largest
macroscopic disposition rate constant. In that case, as
before, the generated limits are, in general, tighter than
the “ideal” limits (which are not feasible, when disposition
is multiexponential) and wider than the “minimum range”
limits.

Discussion
The conclusion that a 20% change in the value of the in

vivo rate constant cannot lead to more than a 20% change
in the value of Cmax is a fundamental result of this work.
In the presence of linear IVIVC, this result enables the
setting of in vitro “minimum range” dissolution limits that
are unspecific to the product and hence are of a general
validity. If in vivo data related to the reference product are
available, xr or yr can be estimated, and the dissolution
limits may be widened (by the use of eqs 6-9). The
dissolution limits in this case are product specific. The
generated limits widen as the xr or yr values decrease.

The determination of the in vitro/in vivo correlation
coefficients is not required for any of the proposed sets of
specifications but in vivo data are generally needed to verify
IVIVC. However, when IVIVC are expected, the “minimum
range” specifications may be set even in the absence of in
vivo data. Similarly, when IVIVC are expected, the “ideal”
specifications may be set even when only the reference
product in vivo data are available. IVIVC are highly
probable when the drug release is sufficiently slow and well
controlled (i.e., when it is unaffected by dissolution condi-
tions such as pH, stirring rate, ionic strength, surfactant
concentration, etc.) Roxatidine controlled/modified-release
capsules3 and the nifedipine push-pull osmotic pump6,7 are
examples. Thus, the proposed specifications, which are
valid for any drug product with established IVIVC, are
particularly useful when IVIVC are expected. This is not
true for methods of setting release specifications based on
convolution/deconvolution or modeling techniques where
the particular in vitro/in vivo correlation coefficients are
required.

It should be emphasized that the availability of in vivo
data is always desired, even when linear IVIVC are
expected. If in vivo data are available, the validity of the
linear IVIVC assumption may be assessed. In addition,
wider dissolution limits can be set because xr or yr may be
evaluated.

Once linear IVIVC have been established (or assumed),
dissolution limits are easily set. The “minimum range”
limits may always be set with the help of a simple desk
calculator. This simplicity is true also with the “ideal”
limits when both the test and the reference products are
released to the same extent. However, a best-fit procedure
is needed to set the “ideal” specifications when the products
are released to a different extent.

An interesting and practical result of this work is the
observation that for x < 0.38 in the zero-order case, or y <
0.07 in the first-order case, a rate-dependent dose-dumping
(an increase of >20% in Cmax) is impossible (Appendixes A

and B). In other words, formulations with x < 0.38 or y <
0.07 are dose-dumping proof.

The methods just described do not deal with any micro-
scopic rate constants. The only values derived from the in
vivo data are the largest disposition rate constant and
either the first-order absorption rate constant or the
duration of the zero-order “infusion”. All of these are
macroscopic constants that do not require any microscopic
modeling. In this respect, the procedure is model inde-
pendent.

For products with a first-order release, it is extremely
important to correctly identify the absorption exponential
term. A wrong identification (in a “flip-flop” situation) may
lead to an underestimation of y1()R1/ka). The generated
dissolution limits, in this case, will allow deviations of the
Cmax value from the (20% range.

Only when IVIVC prevail can dissolution data be used
as a surrogate for the in vivo performance of the drug. From
practical experience, the majority of dissolution profiles can
be closely approximated by zero- or first-order rates of
release. To demonstrate linear Level A IVIVC, the patterns
of in vitro release and in vivo absorption profiles must be
similar, which means that mainly zero- or first-order in
vivo absorption profiles can linearly be correlated with the
in vitro data. The more complex absorption curves origi-
nating due to the changing physiological environment along
the gastrointestinal tract, (usually) cannot be linearly
correlated with the (simple) in vitro release curves. Hence,
a procedure for the establishment of dissolution specifica-
tions, that deals with zero-or first-order release rates (like
the one proposed in this work) covers most cases with linear
Level A IVIVC.
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Appendix A: One-Compartment Model with
Zero-Order Absorption

Consider a one-compartment open model with a zero-
order absorption. Define the dimensionless variable x

where T is the duration of the absorption process (the

Qyr
Qyr/(1-Qyr)

yr
yr/(1-yr)

- 1 + ∆A
Ar

) (0.2 (12)

{∆kdo/kdo(r) or ∆kda/kda(r)} ) 1/Q - 1 (13)

x ) kel T (A1)
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“infusion” time) and kel is a first-order elimination constant.
Then

where D is the dose absorbed and V is the compartment
volume.4

The following question is addressed: How is a (macro-
scopic) difference between the (zero-order) absorption rate
constants of two products related to the difference in their
Cmax values? Equation A1 may be rewritten as

where ko is the zero-order absorption rate constant. Con-
sider test and reference products with equal D, V, and kel
values.

The absorption rate constant of the test product, ko(t),
has a different value from that of the reference product,
ko(r).

Define

Then

By eqs A2 and A4

At the limit, as xr f ∞

Hence, as xr f ∞, the relative difference in Cmax is equal to
the relative difference in ko.

Derive x with respect to ko

The infinitesimal relative difference in Cmax is defined by

where eq A8 was used, and C′max is the derivative of Cmax
with respect to x.

Define

It may be proven (Appendix F) that F(x) is a positive and
monotone increasing function of x for x > 0.

As x f ∞, F(x) assumes its maximal value and therefore,
for a constant value of dCmax/Cmax, dko/ko is minimal (by
its absolute value) at that limit.

It is demonstrated in Appendix G that the macroscopic
quantity |∆ko|/ko(r) corresponding to a constant value of
|∆Cmax(r)|/Cmax, assumes a minimum value as xr f ∞.

This value, which is equal (by eq A7) to |∆Cmax|/Cmax(r) is
a lower boundary to |∆ko|/ko(r) (at any xr) that corresponds
to a constant relative difference between the Cmax values.
In other words, a relative difference of (q in ko corresponds
to a relative difference in Cmax, which is less than q by its
absolute value. When xr f ∞, this relative difference in Cmax
approaches q (by its absolute value).

Hence, the in vivo limits ∆ko/ko(r) ) (0.2 ensure the
condition: |∆Cmax|/Cmax(r) < 0.2. These limits will be termed
the “minimum range” limits. The “minimum range” limits
are the widest (relative) rate constant limits common to
all reference products. Being common to all reference
products, the “minimum range” limits must be tighter than
the widest feasible rate constant limits for any individual
product. Hence the origin of the name.

Using eqs A5 and A6 it is possible to estimate (numeri-
cally) the value of ∆ko/ko(r) correlating to a certain relative
difference in Cmax, as a function of xr. Figure 1 depicts the
best fitted ∆ko/ko(r) values related to ∆Cmax/Cmax(r) value of
+0.2. An asterisk was added as a reminder that a standard
+20% difference in Cmax is involved.

For xr < 0.38, ∆ko
//ko(r) values diverge. This result

means that an infinite relative increase in the ko(r) value
is needed when xr < 0.38 to observe a +20% change in Cmax.
Therefore, dose-dumping (due to a difference in the drug
release rate) is not expected when xr < 0.38. This is a
consequence of the fact that for xr < 0.38, Cmax is closer to
its maximal value (at x ∼ 0) by <20%.

The data presented in Figure 1 fit the equation

The ∆ko
//ko(r) values estimated with eq A11 are presented

by the line in Figure 1. The accuracy of eq A11 was tested
by using ∆ko

//ko(r) values estimated by eq A11 in eqs A5
and A6 to evaluate ∆Cmax/Cmax(r). With 20 xr values in the
range {0.38 < xr < 100} the relative difference in Cmax was
close to 0.2 (ranging from 0.189 to 0.209), as presented in
Figure 3. Figure 2 depicts the best fitted ∆ko/ko(r) values
related to a ∆Cmax/Cmax(r) value of -0.2. The (•) superscript
is a reminder that a standard -20% difference in Cmax is
involved. The data presented in Figure 2 fit the equation

The fit is presented by the line in Figure 2. The accuracy
of eq A12 was examined by using the values generated by
this equation in eqs A5 and A6 to evaluate ∆Cmax/Cmax(r).
The relative difference between the Cmax values was close
to -0.2 [from (-0.190) to (-0.202)] for 20 xr values in the
range {0.008 < xr < 100}, as presented in Figure 4.

Equations A11 and A12 define the relative differences
in the absorption rate constant values that are consistent
with exactly +20% or -20% difference between the Cmax
values. Therefore, these equations constitute the widest
possible absorption rate constant limits that ensure the
bioequivalence of test and reference products. Hence, they
will be termed the zero-order absorption “ideal” limits. The
“ideal” limits are specific to each reference product.

An error in the estimation of ∆ko
//ko(r) or ∆ko

• /ko(r) by eqs
A11 or A12 may result from a misevaluation of xr. This
misevaluation will lead to ∆Cmax/Cmax(r) values different
from the expected values of ∼ +0.2 or ∼ -0.2, respectively.
Figure 3 includes the effects of +20% or -20% errors in
the estimation of xr on the value of ∆Cmax/Cmax(r), when its

Cmax ) D
Vx

(1 - e-x) (A2)

x )
kel D

ko
(A3)

Q )
xt

xr
)

ko(r)

ko(t)
(A4)

∆ko

ko(r)
)

ko(t) - ko(r)

ko(r)
) 1

Q
- 1 (A5)

∆Cmax

Cmax(r)
)

Cmax(t) - Cmax(r)

Cmax(r)
) 1 - e-Qxr

Q(1 - e-xr)
- 1 (A6)

lim
xrf∞

∆Cmax

Cmax(r)
) 1

Q
- 1 )

∆ko

ko(r)
(A7)

dx
dko

) -
kelD

ko
2

) - x
ko

(A8)

dCmax

Cmax
)

C′max

Cmax
dx ) -

C′max x
Cmax

dko

ko
) [1 - e-x(x + 1)

1 - e-x ]dko

ko

(A9)

F(x) )
1 - e-x(x + 1)

1 - e-x
(A10)

∆ko
//ko(r) ) 0.0018722xr

-9.097 + 0.52492xr
-2.003 + 0.2

(A11)

∆ko
• /ko(r) ) -0.35753e-4.4507xr - 0.44063e-1.0255xr - 0.2

(A12)
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expected value is ∼ +0.2 (i.e. when eq. A11 is used for an
estimation of ∆ko

//ko(r)). In a similar way, Figure 4 includes
the effect of +20% or -20% errors in the estimation of xr
on the value of ∆Cmax/Cmax(r) when its expected value is
∼ -0.2 (i.e., when eq A12 is used for an estimation of
∆ko

• /ko(r)). An overestimation of xr will lead to |∆Cmax|/
Cmax(r) < 0.2. In this case, the ∆ko

//ko(r) and ∆ko
• /ko(r) values

estimated with eqs A11 and A12 will lead to ∆Cmax/Cmax(r)
values within the assumed boundary. However, when xr is
underestimated, |∆Cmax|/Cmax(r) > 0.2. The effect of an error
in the estimation of xr is especially pronounced for low
values of xr. Therefore, when the precise value of xr is
uncertain, it is good practice to use its highest estimated
value to evaluate ∆ko

//ko(r) or ∆ko
• /ko(r). The resultant ∆Cmax/

Cmax(r) value will then probably be confined within the (0.2
limits.

If the xr value is unknown, using the “minimum range”
rate limits: ∆ko/ko(r) ) ( 0.2 will ensure the condition:
|∆Cmax|/Cmax < 0.2.

Generally, it is desired to set the widest limits (on a
variable) that are consistent with a certain constraint. The
“ideal” limits are always wider than the “minimum range”
limits. On the other hand, the “ideal” limits may be used
only when the reference in vivo rate constants are known.

Appendix B: One-Compartment Model with
First-Order Absorption

Consider a one-compartment open model with first-order
absorption. The parameter Cmax is given by4

where ka is a first-order absorption constant. The param-
eter tmax is given by

Define the dimensionless variable y

Then, by eq B2,

Using eqs B4 and B5 in eq B1 produces

It is of interest to investigate the effect of a (macroscopic)
difference between the (first-order) absorption rate con-
stants of two products on their relative Cmax values.
Consider test and reference products with equal D, V, and
kel values. The first-order rate constant of the test product,
ka(t) has a different value from that of the reference product,
ka(r).

Define

Then

Equation B8 is identical to eq A5 except that here first-
order constants are involved. By the use of eq B6,

At the limit as yr f ∞,

Equation B10 is identical to eq A7. By eq B10, as yr f ∞,
the relative difference in Cmax is equal to the relative
difference in ka.

Derive y with respect to ka

The infinitesimal relative difference in Cmax is defined by

where eq B11 was used and C′max is the derivative of Cmax
with respect to y (derivation of eq B6).

Define

It may be proven (see Appendix H) that G(y) is a positive
and monotone increasing function of y, for y > 0 (y * 1).
Therefore, as y f ∞, G(y) assumes a maximal value. Hence,
by eq B12, for a constant value of dCmax/Cmax, dka/ka is
minimal (by its absolute value) as y f ∞, exactly as in the
zero-order model when x f ∞.

By replacing x with y and ko with ka in Appendix G, it is
demonstrated that the macroscopic quantity |∆ka|/ka(r),
corresponding to a constant value of |∆Cmax|/Cmax(r) assumes
a minimum value as yr f ∞, just as in the zero-order model
when xr f ∞. This value, which is equal (by eq B10) to
|∆Cmax|/Cmax(r), is a lower boundary of the absolute value
of |∆ka|/ka(r) (at any yr) that corresponds to a constant
relative difference in Cmax. In other words, a relative
difference of (q in ka corresponds to a relative difference
in Cmax that is less than q by its absolute value. When yr
f ∞, this relative change in Cmax approaches q (by its
absolute value). Hence the in vivo “minimum range” limits
∆ka/ka(r) ) (0.2, ensure the condition ∆Cmax/Cmax(r) < 0.2,
just as in the zero-order case.

Using eqs B8 and B9, it is possible to estimate (numeri-
cally) the value of ∆ka/ka(r) corresponding to a certain
relative difference in Cmax as a function of yr. Figure 5
depicts the best fitted ∆ka/ka(r) values related to a ∆Cmax/
Cmax(r) value of (0.2. Like before, the asterisk stands for a
standard +20% difference in Cmax. For yr < 0.07, the ∆ka/
ka(r) values diverge, indicating that under this condition, a

Cmax )
kaD

V(ka - kel)
(e-keltmax - e-katmax) (B1)

tmax ) 1
ka - kel

ln[ka/kel] (B2)

y ) kel/ka (B3)

e-keltmax ) yy/(1-y) (B4)

e-katmax ) y1/(1-y) (B5)

Cmax ) D
V

yy/(1-y) (B6)

Q )
yt

yr
)

ka(r)

ka(t)
(B7)

∆ka

ka(r)
)

ka(t) - ka(r)

ka(r)
) 1

Q
- 1 (B8)

∆Cmax

Cmax(r)
)

Cmax(t) - Cmax(r)

Cmax(r)
)

yt
yt/(1-yt) - yr

yr/(1-yr)

yr
yr/(1-yr)

)

(Qyr)
Qyr/(1-Qyr) - yr

yr/(1-yr)

yr
yr/(1-yr)

)
(Qyr)

Qyr/(1-Qyr)

yr
yr/(1-yr)

- 1 (B9)

lim
yrf∞

∆Cmax

Cmax(r)
) 1

Q
- 1 )

∆ka

ka(r)
(B10)

dy
dka

) -
kel

ka
2

) - y
ka

(B11)

dCmax

Cmax
)

C′max

Cmax
dy ) -

C′max

Cmax
y

dka

ka
) [(y - 1 - ln y)y

(1 - y)2 ]dka

ka

(B12)

G(y) )
(y - 1 - ln y)y

(1 - y)2
(B13)
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+20% difference in Cmax (a dose-dumping due to a differ-
ence in the release rates) is impossible. This is a conse-
quence of the fact that, for yr < 0.07, Cmax is closer to its
maximal value (at y ∼ 0) by <20%.

The data presented in Figure 5 fit the equation

The ∆ka
//ka(r) values estimated with eq B14 are presented

by the line in Figure 5. The accuracy of eq B14 was tested
by using the estimated ∆ka

//ka(r) values in eqs B8 and B9 to
evaluate ∆Cmax/Cmax(r). Twenty yr values in the range {0.07
< yr < 100} were examined. The relative difference in Cmax
was close to 0.2 (from 0.184 to 0.201), as presented in
Figure 7.

Figure 6 depicts the best fitted ∆ka/ka(r) value related to
a ∆Cmax/Cmax(r) value of -0.2. The (•) superscript, as in the
zero-order model, stands for a standard -20% difference

in Cmax. The data presented in Figure 6 fit the equation

The fit is presented by the line in Figure 6. The accuracy
of eq B15 was examined, like before, by using the values
generated by this equation in eqs B8 and B9 to evaluate
∆Cmax/Cmax(r). With 20 yr values examined in the range
{0.004 < yr < 100}, the ∆Cmax/Cmax(r) values were between
-0.186 and -0.212, as presented in Figure 8.

Like eqs A11 and A12, eqs B14 and B15 define the
relative differences in the absorption rate constant values,
consistent with exactly +20% or -20% differences between
the Cmax values. Therefore, these equations provide the
widest possible rate constant limits that ensure the bioequiv-
alence of the test and reference products. They will be
termed the first-order absorption “ideal” limits. These
limits are specific to each reference product.

An error in the estimation of ∆ka
//ka(r) or ∆ka

• /ka(r) by eqs
B14 or B15 may result from a misevaluation of yr. This
misevaluation will lead to ∆Cmax/Cmax(r) values different
from the expected values of ∼ +0.2 or ∼ -0.2, respectively.
Figure 7 presents the effects of +20% or -20% errors in
the estimation of yr on the value of ∆Cmax/Cmax(r), when its
expected (standard) value is ∼ +0.2 (i.e., when eq B14 is
used for the estimation of ∆ka

//ka(r)). In a similar way,
Figure 8 presents the effect of +20% or -20% errors in yr
on the value of ∆Cmax/Cmax(r) when its expected (standard)
value is ∼ -0.2 (i.e., when eq B15 is used for an estimation
of ∆ka

• /ka(r)). As in the zero-order case, an overestimation
of yr will lead to ∆Cmax/Cmax(r) values within the boundaries
assumed. However, when yr is underestimated, ∆Cmax/
Cmax(r) > 0.2. As before, the effect of an error in yr is
especially pronounced for low yr values.

When the precise value of yr is uncertain, it is a good
practice to use its highest estimated value in eqs B14 and
B15. If the yr value is unknown, the “minimum range”
limits ∆ka/ka(r) ) (0.2 should be used. The “ideal” limits
are always wider. They are, however, feasible only when
the reference in vivo data are available.

Figure 5sThe relative difference in the (first-order) absorption rate constant
values correlating to a standard +20% difference in the Cmax values, as a
function of yr. The line presents ∆ka

//ka(r) values estimated by the use of eq
B14. In the presence of linear IVIVC, the same line defines the upper limit of
the “ideal” specifications.

Figure 6sThe relative difference in the (first-order) absorption rate constant
values correlating to a standard −20% difference in the Cmax values, as a
function of yr. The line presents ∆ka

•/ka(r) values estimated by the use of eq
B15. In the presence of linear IVIVC, the same line defines the lower limit of
the “ideal” specifications.

Figure 7s∆Cmax/Cmax(r) values generated for the first-order case by using
∆ka

//ka(r) values (defined by eq B14) in eqs. B8 and B9. The effects of +20%
or −20% errors in the estimation of yr (Dyr/yr ) +0.2 or Dyr/yr ) −0.2) are
also included.

∆ka
//ka(r) ) 0.277yr

-0.767 + 0.0271yr
-3.005 + 0.2 (B14)

∆ka
• /ka(r) ) -0.299 e-26.4yr - 0.348 e-3.128yr -

0.146 e-0.165yr - 0.2 (B15)
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Appendix C: Multicompartment Model with
Zero-Order Absorption

When the disposition phase of a drug with a zero-order
absorption is appropriately described by n exponential
terms, with n first-order rate constants: R1 > R2 > ... >
Rn, the dependence of Cmax on the zero-order rate constant
is specific to the kinetic model involved. Consider an
n-compartment model with a zero-order absorption and m
(microscopic) first-order disposition rate constants kj (j )
1, ... m). When elimination occurs from the central com-
partment, the concentration in this compartment (while
absorption is continuing) is given by4

where Vc is the volume of the central compartment and Ei
is the sum of the exit rate constants from the ith compart-
ment. The parameter Rl can be expressed in terms of the
kj values (it is not dependent on other physical constants).
Because Rl has the same dimensions as kj (time-1), Rl is a
homogeneous function of the first degree with respect to
the kj values. That is, Rl (k1, ..., km) satisfies the identity

where q is any number.
Equations C1 and C2 imply

When t ) T, we have

Using q ) T in eq (C4) provides

Therefore, Cmax is dependent on the m dimensionless
variables: k1T, ... kmT and on D/Vc. The same conclusion
may be reached when the elimination is not from the
central compartment or when the concentration involved
is that of a peripheral compartment.

The one-compartment model discussed in Appendix A
is a special case with m ) 1 and k1 ) kel. As demonstrated

where x ) kel T.
If a one-compartment model is used (as an approxima-

tion) to describe the kinetics of a drug with n exponential
disposition terms, the best-fitted disposition rate constant
must be smaller than R1 (and larger than Rn).

Define

If x1(r) is used instead of xr in eq A6, it is reasonable to
believe that

because the x1(r) is an upper boundary of xr. For the same
reason, using x1(r) values as defined by eq C7 in eqs A11 or
A12 will generate |∆Cmax|/Cmax(r) < 0.2.

Four different compartment models (with a zero-order
absorption) were used to assess this assumption: a classical
two-compartment model, a classical three-compartment
model, a two-compartment model with a central absorption
and a peripheral elimination, and a three-compartment
model with a central absorption and a peripheral elimina-
tion. Values between 0 and 1 were randomly assigned to
the disposition rate constants of each model. For this
purpose, a computerized random number generator was
used. Ten sets of disposition rate constants were thus
produced for each model. For the two-compartment models,
the values of the three microscopic disposition rate con-
stants were assigned in this same way. For the three-
compartment models, the values of the three macroscopic
rate constants and of two of the microscopic rate constants
were similarly assigned.

Five absorption rate constant values were defined such
that

where eq C7 was used to define x1(r). In this way, a total of
50 different sets of constants were generated for each
model.

Equations A11 and A12 with x1(r) substituted for xr, were
utilized to produce ko(t)

/ (the upper boundary of ko(t)) or ko(t)
•

(the lower boundary of ko(t)). These values were introduced
into the model to estimate Cmax(t).

In each of the four models examined, the inequality

was verified for all 50 data sets. The values for |∆Cmax|/
Cmax(r) were in the range of ∼ 1% to 19%. Hence, eqs A11
and A12 (the zero-order “ideal” limits) may be used to
assess the absorption rate limits for products with a zero-
order absorption and a multiexponential disposition.

Figure 8s∆Cmax/Cmax(r) values generated for the first-order case by using
∆ka

•/ka(r) values (defined by eq. B15) in eqs B8 and B9. The effects of +20%
or −20% errors in the estimation of yr (Dyr/yr ) +0.2 or Dyr/yr ) −0.2) are
also included.

C(t) )
D/T

Vc
∑
l)1

n
(1 - e-Rlt)∏

i)2

n

(Ei - Rl)e
-Rlt

-Rl∏
i)1
i*l

n

(Ri - Rl)

(C1)

Rl (qk1,....qkm) ) qRl (k1,....km) (C2)

C(D/VcT,k1,....,km,t) ) C(qD/VcT,qk1,...,qkm,t/q) (C3)

Cmax ) C(D/VcT,k1,...km,T) ) C(qD/VcT,qk1,...,qkm,T/q)
(C4)

Cmax ) C(D/Vc, k1T,,...kmT) (C5)

Cmax (one compartment) ) C(D/Vc, x) (C6)

x1 )
R1D
ko

()R1T) (C7)

|∆Cmax|
Cmax(r)

< 1-e-Qx1(r)

Q(1-ex1(r))
- 1 (C8)

x1(r) ) 0.1, 0.5, 1.5, 5, 30 (C9)

|∆Cmax|/Cmax(r) < 20% (C10)
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The relative rate limits defined by eqs A11 and A12 are
wider than (20% for any finite value of xr(1). Because eq
C10 holds when the limits are wider than 20%, it will
certainly hold when the relative rate is limited to (20%
(in each of the four models used, for each of the sets of data
examined). Thus, the validity of the “minimum range” rate
limits is verified for products with a zero-order absorption
and a multiexponential disposition.

Appendix D: Multicompartment Model with
First-Order Absorption

For the case of multiexponential disposition, consider an
n-compartment model with a first-order absorption (ka) and
m(microscopic) first-order disposition rate constants kj (j
) 1,...m). When the elimination occurs from the central
compartment, the concentration in the central compart-
ment is given by4

where Rl is a first-order macroscopic disposition constant,
Vc is the volume of the central compartment, and Ei is the
sum of the exit rate constants from the ith compartment.

By eqs C2 and D1, the following identity is satisfied

where q can be any number.
Therefore, under the transformations

The value of the untransformed function (at any time point
t) is equal to the value of the transformed function (at time
point t/q). In particular, the maximum value of the un-
transformed function (at tmax) is equal to the maximum
value of the transformed function (at tmax/q). Hence

where t̂max is the time correlating to maximum value of the
transformed function.

Therefore, Cmax is a function of the following variable

However, its value is independent of the value of q. The

parameter tmax is not included among the variables in eq
D4 because Cmax is defined at t ) tmax (Cmax is not a function
of tmax).

Using q ) 1/ka in eq D4 provides

Cmax is therefore dependent on the m dimensionless
variables (k1/ka,...km/ka) and on D/Vc. The same conclusion
may be reached when the elimination is not limited to the
central compartment, or when the concentration involved
is that of a peripheral compartment.

In the one-compartment case

This is demonstrated by eq B6 (with k1 ) kel).
Define

where R1 is the largest first-order (macroscopic) disposition
rate constant. If y1(r) is used instead of yr in eq B9, it is
reasonable to believe that

because y1 is an upper boundary of y. For the same reason,
using y1(r) values as defined by eq D7 in eqs B14 or B15
will generate |∆Cmax|/Cmax < 0.2.

For assessing this assumption, the four compartment
models used in Appendix C, were utilized with a first-order
absorption. The procedure of assigning values to the
disposition rate constants was identical to that previously
used. The five absorption rate constant values were defined
such that

where eq D7 was used to define y1(r). Equations B14 and
B15 with y1(r) substituted for yr were used to produce ka(t)

/

(the upper boundary of ka(t)) or ∆ka(t)
• (the lower boundary

of ka(t)). These values were introduced into the model to
estimate Cmax(t).

As in the zero-order models, with each of the four models
examined, the inequality

was verified for all 50 data sets. Hence, eqs B14 and B15
(the first-order “ideal” limits) may be used to evaluate the
absorption rate limit for products with a first-order absorp-
tion and a multiexponential disposition.

The relative rate limits defined by eqs B14 and B15 are
wider than (20% for any finite value of y1(r). Hence, it is
clear that limiting the relative rate to (20% will also lead
to eq D10 in each of the four models used and for each of
the data sets examined. Thus, the “minimum range” limits
are applicable for products with a first-order absorption
and a multiexponential disposition.

Appendix E: The Effect of a Difference in the
Extent of Absorption

It has been postulated, so far, that both test and
reference products are absorbed to the same extent. Sup-
pose that each product is absorbed to a different extent.

C )
kaD

Vc

∏
i)2

n

(Ei - ka)

∏
i)1

n

(Ri - ka)

e-kat +

kaD

Vc
∑
l)1

n ∏
i)2

n

(Ei - Rl)

(ka - Rl)∏
i)1
i*l

n

(Ri - Rl)

e-Rlt (D1)

C(D/Vc, ka, k1,...,km, t) ) C(D/Vc, qka, qk1,...,qkm, t/q)
(D2)

ka f qka

k1 f qk1

l

km f qkm

C(D/Vc, ka, k1,...km, tmax) ) C(D/Vc, qka, qk1,...qkm, t̂max)
(D3)

Cmax ) C(D/Vc, qka, qk1,...,qkm) (D4)

Cmax ) C(D/Vc, k1/ka,...,km/ka) (D5)

Cmax ) C(D/Vc, k1/ka) (D6)

y1 )
R1

ka
(D7)

|∆Cmax|
Cmax

<
Qy1(r)

Qy1(r)/(1-Qy1(r))

y1(r)
y1(r)/(1-y1(r))

- 1 (D8)

y1(r) ) 0.1, 0.5, 1.5, 5, 30 (D9)

|∆Cmax|/Cmax < 20% (D10)
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By the zero-order or the first-order models (mono- or
multiexponential disposition), Cmax may be presented as

where D is the dose absorbed and z stands for either x or
y, depending on the model used. The function E depends
on the particular model.

Therefore

Using eq E1 in eq E2, we get

By eq E3, the total relative difference in Cmax is the sum of
the relative difference in D and the “partial” relative
difference in Cmax (when D ) constant).

Hence, when the test and reference products are ab-
sorbed to a different extent, eq A6 for the zero-order case
is generalized as

Similarly, eq B9 for the first-order case is replaced by

For the zero-order model, at the limit as xr f ∞

Similarly, for the first-order model when yr f ∞

Equations E6 and E7 are generalizations of eqs A7 and
B10, respectively.

Appendix F: The Function F(x)
By eq A10

Define

Then

By eq F1

Hence, eq F2 implies

It is also true that

Therefore

Derive F(x) with respect to x

Define

Then

By eq F8, p(0) ) 0. Therefore eq F9 implies

It is also true that

Therefore

Hence F(x) is a positive monotone increasing function of x
for x > 0.

Appendix G: The Asymptotic Behavior of
∆ko/ko(r)

A constant value of the integral on the left-hand side of
eq G1 corresponds to a constant value of ∆Cmax/Cmax(r).

It was proven that the infinitesimal quantity dko/ko,
corresponding to a constant infinitesimal relative difference
in Cmax (dCmax/Cmax), is minimal (by its absolute value) as
x f ∞. Therefore, the integrated form ∫r

t dko/ko corre-
sponding to a constant value of ∫r

t dCmax/Cmax must also
assume a minimum value as xr f ∞.

Because

|ln(ko(t)/ko(r))|, corresponding to a constant value of ∆Cmax/
Cmax(r), has a minimum value as xr f ∞.

When ko(t)/ko(r) > 1, both ko(t)/ko(r) and |ko(t)/ko(r) - 1| attain
a minimum value as xr f ∞. When ko(t)/ko(r) < 1, ko(t)/ko(r) is
maximal as xr f ∞, whereas |ko(t)/ko(r) - 1| is minimal at
this limit.

Cmax ) D‚E(z) (E1)

dCmax )
∂Cmax

∂D
dD +

∂Cmax

∂z
dz (E2)

dCmax

Cmax
) dD

D
+ [dCmax

Cmax
]

D
(E3)

∆Cmax

Cmax(r)
) 1 - e-Qxr

Q(1 - e-xr)
- 1 + ∆D

Dr
(E4)

∆Cmax

Cmax(r)
)

(Qyr)
Qyr/(1-Qyr)

yr
yr/(1-yr)

- 1 + ∆D
Dr

(E5)

lim
xrf∞

∆Cmax

Cmax(r)
) 1

Q
+ 1 + ∆D

Dr
)

∆ko

ko(r)
+ ∆D

Dr
(E6)

lim
yrf∞

∆Cmax

Cmax(r)
) 1

Q
+ 1 + ∆D

Dr
)

∆ka

ka(r)
+ ∆D

Dr
(E7)

F(x) )
1 - e-x(x + 1)

1 - e-x

f(x) ) 1 - e-x(x + 1) (F1)

f ′(x) ) xe-x > 0 for x > 0 (F2)

f(0) ) 0 (F3)

f(x) > 0 for x > 0 (F4)

1 - e-x > 0 when x > 0 (F5)

F(x) )
f(x)

1 - e-x
> 0 when x > 0 (F6)

F′(x) )
e-x(e-x + x - 1)

(1 - e-x)2
(F7)

p(x) ) e-x + x - 1 (F8)

p′(x) ) 1 - e-x > 0 when x > 0 (F9)

p(x) > 0 when x > 0 (F10)

e-x

(1 - e-x)2
> 0 for any x (F11)

F′(x) )
e-xp(x)

(1 - e-x)2
> 0 when x > 0

∫r

tdCmax

Cmax
) ln

Cmax(t)

Cmax(r)
) ln(∆Cmax

Cmax(r)
+ 1) (G1)

∫r

t dko

ko
) ln

ko(t)

ko(r)
(G2)
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Hence |ko(t)/ko(r) - 1| ()|∆ko|/ko(r)) corresponding to a
constant value of |∆Cmax|/Cmax(r), is minimal as xr f ∞.

Appendix H: The Function G(y)
By eq B13

Define

Then

By eq H2

By eq H1 g(y ) 1) ) 0; hence, eq H3 implies

For the same reason, eq H4 implies

Therefore

Derive G(y) with respect to y

Define

Then

Suppose h′(y) ) 0, then by eq H10

Equation H11 is satisfied when y ) 1. Therefore, y ) 1 is
a solution for h′(y) ) 0. We shall prove that y ) 1 is the
only solution for h′(y) ) 0 (0 < y < ∞):

When y > 0, both ln y and (y - 1)/y are monotone
increasing functions of y, as demonstrated by eqs H12 and
H13

By eqs H12 and H13

Therefore, for y > 1, ln y increases (with y) faster than (y
- 1)/y, and the functions do not cross each other. For 0 <
y < 1, ln y decreases (when y decreases) slower than (y -
1)/y and again, both functions do not cross. Therefore, y )
1 is the only solution for h′(y) ) 0 (0 < y <∞).

A second differentiation of h(y) with respect to y, provides

At y ) 1

Therefore y ) 1 is an inflection point of h(y). Because y )
1 is the only point where eq H11 holds, h(y) is monotone
for 0 < y < ∞. By substituting any positive value (*1) for
y in eq H10, it is found that

Therefore, h(y) is a monotone decreasing function of y for
0 < y < ∞.

By eq H9

Hence

Therefore

It may be concluded that G(y) is a positive and monotone
increasing function of y for 0 < y < ∞ (y * 1) and it is
undefined at y ) 1.

JS980322P

G(y) )
(y - 1 - ln y)y

(1 - y)2

g(y) ) y - 1 - ln y (H1)

g′(y) ) y - 1
y

(H2)

g′(y) > 0 for y > 1 (H3)

g′(y) < 0 for 0 < y < 1 (H4)

g(y) > 0 for y > 1 (H5)

g(y) > 0 for 0 < y < 1 (H6)

G(y) )
g(y)

(1 - y)2
y > 0 for y > 0 (H7)

G′(y) )
(y - 1 - ln y)(1 + y) - (1 - y)2

(1 - y)3
(H8)

h(y) ) (y - 1 - ln y)(1 + y) - (1 - y)2 (H9)

h′(y) ) 1 - ln y - y-1 (H10)

ln y ) y - 1
y

(H11)

[ln y]′ ) 1
y

(H12)

[y - 1
y ]′ ) 1

y2
(H13)

[ln y]′ > [y - 1
y ] for y > 1 (H14)

[ln y]′ < [y - 1
y ] for 0 < y < 1 (H15)

h′′(y) ) 1
y

+ 1
y2

(H16)

h′′(y ) 1) ) 0 (H17)

h′(y) < 0 (H18)

h(y ) 1) ) 0 (H19)

h(y < 1) > 0 (H20)

h(y > 1) < 0 (H21)

G′(y) )
h(y)

(1 - y)3
> 0 for 0 < y < ∞ (y * 1)
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